Age-related change in stimulus-elicited amygdala-prefrontal circuitry: a longitudinal multiverse approach

Paul Alexander Bloom, Michelle VanTieghem, Laurel Gabard-Durnam, Dylan Gee, Jessica Flannery, Christina Caldera, Bonnie Goff, Eva Telzer, Kathryn L. Humphreys, Dominic Fareri, Mor Shapiro, Niall Bolger, Mariam Aly, & Nim Tottenham

Questions? Ask me!

paul.bloom@columbia.edu @paul_a_bloom
Study Objectives

• Understand within-person longitudinal changes in task-elicited amygdala-mPFC circuitry between ages 4-22 years
Study Objectives

- Understand within-person longitudinal changes in task-elicited amygdala-mPFC circuitry between ages 4-22 years
- Assess whether any age-related changes are robust to fMRI analysis decisions (Botvinik-Nezer et al., 2020)
Cohort

- Recruitment in greater LA through flyers, state birth records, community events, online advertising, lab website and newsletters, psychologists’ offices, word-of-mouth
- Longitudinal recruitment at ‘waves’ 1 & 2 out of 3

<table>
<thead>
<tr>
<th>Race</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Indian/Alaskan Native</td>
<td>3</td>
</tr>
<tr>
<td>Asian</td>
<td>18</td>
</tr>
<tr>
<td>Black</td>
<td>26</td>
</tr>
<tr>
<td>Hawaiian/Pacific Islander</td>
<td>2</td>
</tr>
<tr>
<td>More than one race</td>
<td>8</td>
</tr>
<tr>
<td>White</td>
<td>36</td>
</tr>
</tbody>
</table>
Design

N = 98 (55% F), 183 total scans
Design

N = 98 (55% F), 183 total scans

Emotion discrimination task in scanner

Event-related design
TR= 2s

(350ms)

(press)

(no press)

(350ms)

ITI 3-9s

Study Wave
- 1
- 2
- 3

Age

Participants
Hypothesis

Decreases in amygdala reactivity to fear faces with age
(Gee et al., 2013)

A shift from positive to negative amygdala-mPFC connectivity with age (generalized psychophysiological interaction; gPPI)
(Gee et al., 2013)
Multiverse analyses: parallel forking paths

- Multilevel model specifications
- Group-level covariates
- Spatial smoothing
- ROI specifications
- Inclusion criteria
- gPPI regressor creation
- GSR

There isn’t time to discuss the preproc steps in depth during this presentation, but feel free to ask me!
Results: amygdala reactivity

"Median pipeline"
Results: amygdala reactivity

- 0.4% positive change CI including 0
- 39.6% negative change CI including 0
- 60% negative change CI excluding 0

Graph showing estimated age-related change in fear-related activity compared to baseline contrast.
Results: amygdala-mPFC functional connectivity (gPPI)

36% positive change
CI including 0

41% negative change
CI including 0

23% positive change
CI excluding 0

Ask me about how these results were sensitive to deconvolution decisions in creating the gPPI regressors
Results: amygdala-mPFC beta series functional connectivity

<table>
<thead>
<tr>
<th>Model</th>
<th>mPFC ROI</th>
<th>GSS</th>
<th>CI excluding 0</th>
<th>CI including 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Group</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Large vmPFC

- Amygdala: amyg_right
- Amygdala: amyg_left
- mPFC ROI #1
- mPFC ROI #2
- mPFC ROI #3

Fear: 15.5% negative change
CI including 0

60.1% positive change
CI including 0

24.4% positive change
CI excluding 0

Monotonic positive change from left to right.

- No Deconv.
- No GSS

BSC
GSS
Conclusions

• Many results highly sensitive to analysis decisions (Botvinik-Nezer et al., 2020)
 • Multiverse analyses can help determine robustness

• Some evidence for age-related decreases in amygdala reactivity to both fear & neutral faces

• No evidence for age-related changes in amygdala-mPFC connectivity to faces
 (Zhang et al., 2019)
Limitations

• No evidence for age-related change ≠ evidence for no age-related change
• Sample not representative of the US population (LeWinn et al., 2017)
• Limited sample size (Marek & Tervo-Clemmens et al., 2020)
• Short, rapid event-related task design
Thank You!

Nim Tottenham
Mariam Aly
Niall Bolger

Michelle VanTieghem
Bridget Callaghan
Chelsea Harmon
Andrea Fields
Anna Vannucci
Tricia Choy
Nick Camacho
Syntia Hadis
Lisa Gibson
Charlotte Heleniak
Sameah Algharazi
DANLab RAs
Louis Waweru

Questions? Ask me!

paul.bloom@columbia.edu
@paul_a_bloom

Society for Research in Child Development
Influence of deconvolution step on gPPI regressors

- gPPI regressors are not *that* similar for deconvolution vs. none
- Changes within deconvolution algorithm create substantially different gPPI regressors

- gPPI regressors correlated with seed, but most strongly without deconvolution