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Our daily lives are filled with temporal structure, from our 
commute to work to the steps in cooking a favorite dinner. 
Memories for temporal regularities allow us to build inter-
nal models that are useful for planning and anticipating 
future events (Behrens et al., 2018; Momennejad, 2020; 
O’Keefe & Nadel, 1979; Tolman, 1948). Accordingly, for 
these models to continue to be useful over a lifetime, they 
must persist over delays of days, weeks, or years. How 
do we build durable internal models of temporal structure, 
and how do these models transform over time?

Past work has investigated how individuals use tem-
poral structure to anticipate events at a relatively short 
timescale, such as one step into the future (Davachi & 
DuBrow, 2015; de Lange et al., 2018; Hindy et al., 2016; 
Kok et al., 2012, 2014; Kok & Turk-Browne, 2018; Schapiro 
et al., 2012; Summerfield & Egner, 2009). Recent work has 
further shown that sequence memories guide anticipa-
tion of events multiple steps in the future (Brunec & 
Momennejad, 2022; Caucheteux et al., 2023; Lee et al., 

2021; Elliott Wimmer & Büchel, 2019) and judgments 
about which items are likely to appear imminently 
(Tiganj et al., 2022), which may help individuals effi-
ciently plan trajectories through learned environments 
(Bonasia et al., 2016; Brown et al., 2016).

Because we often repeatedly visit an environment 
whose temporal structure is stable over time, our  
internal models must be maintained —and potentially 
transformed—over periods of memory consolidation 
(Rauss & Born, 2017). Indeed, consolidation improves 
memory for temporal order (Drosopoulos et al., 2007), 
including temporal structure acquired through statistical 
learning (Arciuli & Simpson, 2012; Durrant et al., 2011, 
2013; Kim et al., 2009; H. Liu et al., 2023). Consolidation 
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Abstract
Many experiences unfold predictably over time. Memory for these temporal regularities enables anticipation of events 
multiple steps into the future. Because temporally predictable events repeat over days, weeks, and years, we must 
maintain—and potentially transform—memories of temporal structure to support adaptive behavior. We explored 
how individuals build durable models of temporal regularities to guide multistep anticipation. Healthy young adults 
(Experiment 1: N = 99, age range = 18–40 years; Experiment 2: N = 204, age range = 19–40 years) learned sequences 
of scene images that were predictable at the category level and contained incidental perceptual details. Individuals 
then anticipated upcoming scene categories multiple steps into the future, immediately and at a delay. Consolidation 
increased the efficiency of anticipation, particularly for events further in the future, but diminished access to perceptual 
features. Further, maintaining a link-based model of the sequence after consolidation improved anticipation accuracy. 
Consolidation may therefore promote efficient and durable models of temporal structure, thus facilitating anticipation 
of future events.
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can also enhance integration of sequences with over-
lapping items (Tompary & Davachi, 2022) and anticipa-
tion of upcoming items (Lutz et  al., 2018). However, 
these studies overwhelmingly investigate how motor 
sequences are consolidated (Galea et al., 2010; Janacsek 
& Nemeth, 2012; Kóbor et al., 2017; Lutz et al., 2018; 
Romano et al., 2010; Sanchez et al., 2010; Walker et al., 
2002, 2003), and the processes underlying learning and 
consolidation of procedural versus episodic memories 
likely differ in important ways (Stickgold, 2005). Studies 
that have investigated episodic learning of temporal 
structure have investigated only consolidation of shorter 
sequences (e.g., three items) and did not test anticipa-
tory judgments (Drosopoulos et al., 2007; Tompary & 
Davachi, 2022). Thus, we have a limited understanding 
of how episodic memories of extended sequences are 
learned, maintained, or transformed over time to enable 
anticipation multiple steps in the future.

How might memory for temporal structure change 
with consolidation? Consolidation promotes schemati-
zation (Dudai et  al., 2015; McClelland et  al., 1995;  
Tompary & Davachi, 2017) so that events are remem-
bered at a high level, but often at the expense of per-
ceptual details (Audrain & McAndrews, 2022; Krenz 
et al., 2023; Lifanov et al., 2021; Robin & Moscovitch, 
2017; Sekeres et al., 2016, 2018; Winocur et al., 2010), 
and with concomitant changes in neural representations 
that promote structured or schematic knowledge  
(Audrain & McAndrews, 2022; Krenz et al., 2023; Lifanov 
et al., 2021; Robin & Moscovitch, 2017; Sekeres et al., 
2016, 2018; Winocur et  al., 2010). If memories for  
temporal structure are likewise schematized, anticipa-
tory judgments may become more efficient after a 
period of consolidation—particularly for events in the 
distant future. In tandem, such memories may at first 
contain visual detail, but they may lose this detail over 
time in favor of representing schematized sequential 
structure.

Thus, our first aim was to test whether consolidation 
of sequence memories promotes efficient far-reaching 
anticipation at the expense of maintaining incidental 
perceptual details. Our second aim was to determine 
what types of internal models are most useful for mul-
tistep anticipatory judgments (Momennejad, 2020), both 
soon after learning and after a consolidation delay. One 
possibility, inspired by model-based frameworks of 
decision-making (Daw & Dayan, 2014), is that individu-
als may form an internal model of a sequence that 
contains representations of each link between items 
(Kalm & Norris, 2014). An alternative possibility, 
inspired by successor representation frameworks 
(Dayan, 1993; Momennejad et al., 2017; Momennejad 
& Howard, 2018; Stachenfeld et  al., 2017), is that 

information about future items in a sequence becomes 
cached into the current item representation.

Across two experiments, we therefore asked how 
internal models of temporal structure are (a) used to 
make anticipatory judgments at multiple timescales, (b) 
transformed with consolidation, and (c) represented in 
memory to guide accurate anticipation. Participants 
learned two sequences of 10 images that were predict-
able at the scene-category level. Participants were then 
cued with a scene category and a sequence and made 
anticipatory judgments about upcoming scene catego-
ries up to four steps into the future. We applied 
sequence-specific perceptual filters to each image; this 
allowed us to investigate whether incidental perceptual 
details were represented in participants’ internal models 
by occasionally swapping the perceptual filter from the 
cued sequence to the one associated with the uncued 
sequence.

In Experiment 1, participants learned the sequences 
and made anticipatory judgments immediately after. We 
hypothesized (a) that anticipatory judgments would be 
less efficient for events further (vs. closer) in the future, 
indicating a behavioral cost to memories that are mul-
tiple steps away from the cued event (Tiganj et  al., 
2022); (b) that anticipatory judgments would be more 

Statement of Relevance

Experiences in our daily lives tend to unfold  
predictably over time. Whether traveling on our 
commute or making dinner, we can use the pre-
dictability of our experiences to anticipate upcom-
ing steps beyond just our immediate future, 
allowing for efficient and adaptive behavior. 
Although temporal structure tends to be stable 
over days, months, or years (e.g., the order of 
subway stops is unlikely to change), it remains 
poorly understood how memory for temporal 
structure transforms over time. Here, we asked 
how memory for temporal structure changes after 
a period of consolidation to guide anticipation of 
events multiple steps in the future. We found that 
anticipating future events in a sequence became 
more efficient after consolidation, particularly for 
events further in the future. In contrast, consolida-
tion reduced access to perceptual details. These 
results provide a crucial link between our under-
standing of memory consolidation and anticipa-
tion of temporal structure, and they demonstrate 
how memory for temporal structure is adaptively 
prioritized to anticipate future events.
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efficient when perceptual filters matched (vs. did not 
match) expectations, reflecting incorporation of per-
ceptual details into anticipated information; and (c) that 
the effect of perceptual filter on anticipatory judgments 
would be stronger for closer (vs. further) events. This 
latter hypothesis reflects our prediction that anticipated 
information will decline in vividness or detail the fur-
ther in the future it is.

In Experiment 2, participants learned the sequences 
and made anticipatory judgments both immediately and 
after a period of consolidation. We hypothesized (a) that 
anticipatory judgments would become more efficient 
after (vs. before) a delay—particularly for events in the 
distant future, indicating a consolidation benefit for 
sequence memory; and (b) that perceptual filters would 
exert less of an influence on anticipatory judgments 
after a delay (vs. before), reflecting a loss of perceptual 
details with consolidation. Finally, we modeled response 
times from Experiments 1 and 2 to determine the strate-
gies that promoted better retention after consolidation. 
We created two models: a link-based model, in which 
links between successive items in the sequence predict 
response times, and a cue-based model, in which 
response times varied depending on which category 
was used as the cue. Because participants were encour-
aged to create stories that linked adjacent images in the 
sequences, we hypothesized that the link-based (vs. 
cue-based) model would better predict response times 
and influence anticipatory judgments.

Open Practices Statement

All data, stimuli, and analysis scripts are publicly avail-
able and can be accessed at https://osf.io/8tuc4/.  
The experiments reported in this article were not 
preregistered.

Experiment 1

Method

Participants.  Our target sample size was determined 
from a priori power analyses. We had two primary mea-
sures of interest: the effect of steps into the future and the 
effect of trial validity. A pilot study (n = 15) indicated that 
the effect of steps into the future was substantially more 
robust than that of trial validity. We therefore powered 
our studies to detect the smaller effect of trial validity  
(dz = 0.59). A power analysis conducted with the pwr 
package in R (Champely et al., 2020) determined that 100 
participants would achieve 98% power (at an alpha of 
.05). We opted to use a higher power threshold than the 
traditional 80% because pilot samples can overestimate 
effect sizes (Gelman & Carlin, 2014).

We recruited participants through the Columbia Uni-
versity Psychology Department Participant Pool and 
through Prolific (www.prolific.co; an online participant-
management tool) until our target sample size was met. 
We recruited a total of 162 participants (116 through 
Prolific and 46 through Columbia University). Two par-
ticipants were excluded from data analysis because they 
failed to respond on more than 50% of trials, and 60 
participants were excluded from data analysis because 
they did not perform statistically above chance on the 
anticipation task (56.875%, as determined by a binomial 
test; see the Procedure section). The data from the 
remaining 100 participants are analyzed here (Mage = 
26.74 years, SD = 7.33; Meducation = 14.88 years, SD = 1.91; 
see Table 1 for demographic information). To be eligible 
for the experiment, participants had to report that they 
were between the ages of 18 and 40, fluent English 
speakers, and resided in the United States. Participants 
were compensated $7 per hour (Prolific) or received 
course credit (Columbia Psychology) for participating. 
All participants provided informed consent, and all pro-
cedures were in accordance with the policies of the 
Institutional Review Board at Columbia University.

Stimuli.  Stimuli consisted of images of 10 different scene 
categories. The categories were airplane cabins, beaches, 
bedrooms, castles, city skylines, forests, kitchens, lecture 
halls, restaurants, and ski slopes. Thirty exemplars of each 
scene category were used in the experiment for a total of 
300 unique images. Images were obtained through the 
SUN database (Xiao et  al., 2010) and through Google 
image searches.

The 10 scene categories were used to form both 
Sequence A (i.e., the first learned sequence) and 
Sequence B (i.e., the second learned sequence), which 
had the same 10 scene categories in a different order. 
We used overlapping sequences to encourage rich epi-
sodic encoding of context-specific (here, sequence-
specific) memories (Chanales et al., 2017) and to make 
the task difficult enough to avoid ceiling performance. 
The sequences were circular, meaning that the final 
category in the sequence connected back to the first 
category. The order of the scene categories across 
Sequence A and Sequence B were designed to be as 
distinct as possible: For any given category, the two 
preceding and two succeeding categories were different 
across sequences (Fig. 1a). The order of the scene cat-
egories in the sequences was randomized across par-
ticipants with the constraint that Sequence A was 
shuffled in the same way across participants to create 
Sequence B, as described above.

We created two versions of each image of each scene 
category, using Photoshop’s sponge and mosaic filters 
(Fig. 1b). This resulted in 600 total images that varied 

https://osf.io/8tuc4/
www.prolific.co
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by scene category (10 categories), unique exemplar (30 
of each category), and perceptual filter (two filters). 
For each participant, each filter was assigned to either 
Sequence A or Sequence B: For half of the participants, 
all images in Sequence A had the sponge filter applied 
to them, and all images in Sequence B had the mosaic 
filter applied to them; the opposite was true for the 
remaining participants (Fig. 1c). Participants were not 
informed about this sequence to filter mapping.

Procedure.  The experiment was conducted on the 
Gorilla platform (www.gorilla.sc; Anwyl-Irvine et  al., 
2020) and was composed of two tasks: sequence learning 
and anticipation (Fig. 2a).

Sequence learning.  During the sequence-learning 
task, participants were instructed to learn the order of 
two sequences (A and B; see the Stimuli section). First, 
participants were shown all 10 scene categories in the 
Sequence A order on the screen and told to generate 
a story to link the 10 categories in order. By pressing 
a button, participants indicated that they were finished 
generating a story. Then they were shown the sequence 
as pairs of adjacent scene categories with a text box dis-
played underneath (e.g., images 1 and 2, then images 2 
and 3). Participants were told to write down the story 
that they had generated (Fig. 2b; see the Supplemental 
Material available online for story examples). During the 
story generation and writing phases, perceptual filters 
were not applied to the scene images (see the Stimuli 

section) so that participants could not incorporate infor-
mation about the perceptual filters into their stories; this 
ensured that these perceptual features were incidental 
to the main anticipation task. Participants had unlimited 
time to generate and write down their stories.

After writing down their Sequence A stories, partici-
pants then viewed exemplars of the scene categories 
in the same sequence order, with the perceptual filter 
for Sequence A (either mosaic or sponge, counterbal-
anced across participants) applied to each image (Fig. 
2b). Participants were told to rehearse their stories. 
Each image was displayed for 5 s with a 0.5-s intertrial 
interval between images. After 20% of trials (i.e., test 
trials), instead of seeing the next image in the sequence, 
participants were shown two images of upcoming scene 
categories and were told to indicate which of those two 
categories was coming up sooner in the sequence, rela-
tive to the preceding category. Participants had 8 s to 
respond and were given feedback about whether their 
answer was correct or incorrect. The entire Sequence 
A order was shown three times, with the exemplars of 
each scene category changing on each repetition.

Following Sequence A learning, the story generation, 
writing, and rehearsal phases were repeated for 
Sequence B. In the rehearsal phase, each exemplar had 
the Sequence B filter (either mosaic or sponge, coun-
terbalanced across participants) applied to it.

After Sequence A and Sequence B learning, the 
rehearsal phase (including test trials) was repeated for 
each sequence in an interleaved fashion. Participants 

Table 1.  Demographic Information for Participants Across Experiments

Experiment 1
Experiment 2
(1-day delay)

Experiment 2
(1-week delay)

Sample size 100 99 105
Age (M ± SD) 26.74 ± 7.33 31.65 ± 5.03 30.65 ± 6.73
Years of education (M ± SD) 14.88 ± 1.91 15.18 ± 1.85 14.99 ± 2.12
Recruitment method 116 Prolific

46 CU
99 Prolific 105 Prolific

Gender 61 F
38 M
1 NB

51 F
47 M
1 NB

55 F
45 M
4 NB

Race 63 W
19 A
10 BR
6 B/AA
1 AI/AN

1 O

77 W
7 A

7 B/AA
7 BR
1 O

80 W
8 B/AA
8 BR
6 A

1 AI/AN
1 O

Ethnicity 97 NH/L
3 H/L

91 NH/L
8 H/L

88 NH/L
16 H/L

Note: CU = Columbia University Psychology Department Participant Pool; gender: F = female, 
M = male, and NB = nonbinary; race: W = white, A = Asian, BR = biracial, B/AA = Black or 
African American, AI/AN = American Indian or Alaskan Native, and O = other; ethnicity, NH/L = 
not Hispanic or Latino, and H/L = Hispanic or Latino. Note that one participant failed to report 
demographic information for Experiment 2 (1-week delay).

www.gorilla.sc
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Fig. 1.  Sequence structure and stimuli. Sequence structure is illustrated in (a). The sequences consisted of 10 scene categories (e.g., 
airplane cabins, swimming pools), indicated by the colored nodes. Sequence A (dark arrows, top) and Sequence B (light arrows, bot-
tom) consisted of the same scene categories in a different order. The sequences were constructed to be as distinct as possible; for a 
given category, the two preceding and two succeeding categories were different across the sequences. Perceptual filters are shown 
in (b). Each image had a perceptual filter applied to it in either the mosaic style (top) or the sponge style (bottom). Each filter was 
assigned to one of the two sequences (counterbalanced across participants), but participants were not informed of this sequence-filter 
mapping. Example sequences are shown in (c), with perceptual filters applied to each scene exemplar for sample Sequence A (top) 
and sample Sequence B (bottom). In this example, Sequence A has the mosaic filter and Sequence B has the sponge filter. Only six 
of the ten categories are shown here for illustrative purposes. Sequence A and Sequence B were defined by a fixed order of scene 
categories, but different exemplars of each category were shown on each trial with minimal exemplar repetition. The sequence order 
of the categories was randomized across participants.
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saw all categories from Sequence A in order, with the 
sequence-specific filter applied, and then all categories 
from Sequence B in order, with the sequence-specific 
filter applied. This procedure occurred three times for 
a total of six presentations for each sequence. The 
exemplar of a given scene category was different on 
each presentation of a given sequence. Finally, partici-
pants were prompted to recall the order of Sequence 
A and Sequence B by writing the order of the categories 
in provided text boxes. If participants could not remem-
ber a category, they were instructed to write “don’t 

know” in the text box. In total, the sequence-learning 
task took approximately 30 min to complete.

Anticipation task.  During the anticipation task, par-
ticipants were cued with an exemplar of a scene category 
on the screen, along with a sequence cue (A or B) for 
4 s (Fig. 2c). The cue image always had the assigned 
sequence-specific filter applied to it. Participants were 
then probed with two exemplars of upcoming categories 
and were told to indicate which of the two categories 
was coming up sooner in the cued sequence, relative to 

Anticipate Upcoming
Categories in

Sequence Order
× 160

Overview of The Paradigm
Day 1 Sequence Learning

(Experiments 1 & 2)

Learn Two
10-scene

Sequences

Day 1 Anticipation
(Experiments 1 & 2)

Day 2 Anticipation
(Experiment 2 only)

1-day or
1-week Delay

Anticipate Upcoming
Categories in

Sequence Order
× 320

Anticipation TaskSequence Learning
Story Generation

| Took a Plane to a Castle

Then | Ate at a Restaurant

Rehearsal

Valid Trials (80%)
Cue: 4 s

Sequence Cue and
Starting Scene Category

Invalid Trials (20%)
Cue: 4 s

What’s Coming Up Sooner?

Probe: 4 s

Probe: 4 s

a

b c

A

A

Fig. 2.  Task schematic. An overview of the paradigm is shown in (a). All participants learned the two category sequences (see Fig. 
1) and then immediately completed 160 trials of the anticipation task. In Experiment 2 only, participants returned either 1 day or 1 
week later and completed another 320 trials of the anticipation task. In sequence learning (b), participants learned the two sequences 
by generating stories that linked adjacent scene categories. After story generation, participants rehearsed their stories (see text for 
details). Finally, we tested sequence learning with a recall test for each sequence (not shown). In the anticipation task (c), participants 
were cued with an image from one of the learned categories along with a sequence cue (A or B) for 4 s. They were then probed with 
two images and had 4 s to indicate which of the two scene categories was coming up sooner in the cued sequence, relative to the 
cue image. The correct answer could be one to four steps away from the cue image. On valid trials (80% of trials), images in both 
the cue and probe screen had the filter from the cued sequence. In this example, based on the sample sequence in Figure 1, both 
the cue and probe filters are mosaic, the filter assigned to Sequence A. On invalid trials (20% of trials), images in the cue screen had 
the filter from the cued sequence, but images in the probe screen had the filter from the uncued sequence. In this example, the cue 
filter is mosaic (assigned to Sequence A in our example), but the probe filter is sponge (assigned to Sequence B in our example). 
Participants performed this anticipation task for both Sequence A and Sequence B in interleaved blocks, with the order of the cue 
images randomized within each block.



Psychological Science XX(X)	 7

the cue image (Fig. 2c). The correct probe could be one 
to four steps away from the cue image (“steps into the 
future” variable), and the correct and incorrect probes 
could be one to four steps away from each other in the 
sequence (granularity variable). Because the sequences 
were circular, participants could be cued with any of the 
scene categories and probed with successors up to eight 
steps away. Participants had 4 s to respond. On 80% of 
trials, the probe images had the correct sequence-specific 
filter applied to them (e.g., a mosaic filter on a mosaic 
sequence trial; valid trials). However, on 20% of trials, 
the probe images had the filter from the other sequence 
applied to them (e.g., a sponge filter on a mosaic 
sequence trial; invalid trials; Fig. 2c). Together, the cue 
and the probe screens comprised a single trial, with a 1-s 
intertrial interval between trials.

Participants performed 160 trials of the anticipation 
task, with 128 valid trials and 32 invalid trials. The cor-
rect answer was equally distributed across steps into 
the future (one to four) and granularity (one to four), 
and valid and invalid trials were equally distributed 
across each step into the future and granularity condi-
tions. Participants performed the anticipation task for 
both Sequence A and Sequence B in alternating blocks 
(with the starting sequence counterbalanced across par-
ticipants). There were eight blocks (10 trials each) of 
Sequence A anticipation and eight blocks (10 trials 
each) of Sequence B anticipation. In each block, par-
ticipants were cued with unique exemplars of each of 
the 10 scene categories in the sequences in a random-
ized order. Participants were never cued with the same 
image (same scene category, exemplar, and filter) more 
than once. Images were not reused from the sequence-
learning phase and were, at most, shown once as a cue 
and once as a probe during the anticipation task. Par-
ticipants were given three 60-s breaks spaced evenly 
throughout the task. The anticipation task took 27 min 
to complete.

Following the anticipation task, participants com-
pleted a short post-task questionnaire in which we 
asked them about their strategies during the task and 
whether or not they noticed the sequence-to-perceptual-
feature mapping.

Analyses.  All analyses were conducted in the R pro-
gramming language using generalized linear and linear 
mixed-effects models (GLMMs and LMMs)—the glmer 
and lmer functions in the lme4 package (Bates et  al., 
2014). For analyses that modeled multiple observations 
per participant, such as accuracy or response time on a 
given trial, models included random intercepts and slopes 
for all within-participant effects. All response time mod-
els examined responses on correct trials only. For analy-
ses that modeled summary statistics, such as inverse 

efficiency, models included random intercepts and slopes 
for all within-participant main effects, but not interac-
tions. Significance of mixed-effects models was assessed 
using the summary() function from the lmerTest package 
(Kuznetsova et  al., 2017), which estimates degrees of 
freedom using Satterthwaite’s method (Satterthwaite, 
1941) and obtains t statistics and p values for beta 
coefficients.

We first checked whether accuracy and response 
time differed across the sequences (A and B) and the 
perceptual filters (mosaic and sponge). To examine 
sequence effects, we fitted separate models for accu-
racy (a GLMM) and response time (an LMM) as a func-
tion of sequence (A = −0.5, B = 0.5). We used the 
following R-based formulas (“participant” indicates par-
ticipant number):

	glmer
correct sequence 1 sequence participant

family bin

~ | ,+ +( )
= “ oomial  data,”











	lmer
RT sequence  1  sequence participant  

data  subset

~ | ,

,

+ +( )
   correct  1= ==( )









 .	

	 (1)

To examine effects of the perceptual filters, we fitted 
separate models for accuracy (a GLMM) and response 
time (an LMM) as a function of perceptual filter 
(mosaic = −0.5, sponge = 0.5). We used the following 
R-based formulas:

glmer
correct filter 1 filter participant  

family binomi

~ | ,+ +( )
= “ aal  data,

,
”









  and

	 lmer
RT filter 1 filter participant  

data  subset correct

~ | ,

,

+ +( )
= ==( )









1
. (2)

For our primary analyses, we used inverse efficiency 
as our dependent variable (average response time 
divided by accuracy; Townsend & Ashby, 1978). We 
opted to use inverse efficiency because performance 
generally got worse, as measured by both response 
times and accuracy, with further steps into the future 
(e.g., slower response times and less accurate responses 
with further steps in the future). Thus, inverse efficiency 
effectively captured both aspects of performance. 
Importantly, we did not observe any evidence for 
speed/accuracy trade-offs. Separate accuracy and 
response time models are reported in the Supplemental 
Material.

Because we had a priori hypotheses about the inter-
action between steps into the future and trial type 
(valid vs. invalid), we calculated this inverse-efficiency 
score for each participant in each trial type and 
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steps-into-the-future bin. Finally, we conducted an 
LMM predicting inverse efficiency as a function of steps 
into the future (−1.5 = 1 step, −0.5 = 2 steps, 0.5 = 3 
steps, 1.5 = 4 steps), trial type (−0.5 = valid trials, 0.5 = 
invalid trials), and their interaction. We used the fol-
lowing R-based formula:

 lmer
inverseEfficiency trialType steps

1 trialType steps pa

~ *

|

+

+ + rrticipant data( )










,
.   (3)

On the basis of our predictions in the Introduction, 
we hypothesized that we would find (a) a main effect 
of trial type showing that responses would be more 
efficient for trials with a perceptual-filter match than 
for trials with a mismatch; (b) a main effect of steps 
showing that responses would be more efficient for 
closer (vs. further) future events; and (c) an interaction 
between trial type and steps, showing that the effect of 
trial type would be stronger for closer (vs. further) 
future events.

Finally, we used an LMM to model inverse efficiency 
as a function of granularity (−1.5 = 1 step, −0.5 = 2 
steps, 0.5 = 3 steps, 1.5 = 4 steps). We used the follow-
ing R-based formula:

	 lmer
inverseEfficiency granularity

1 granularity participan

~

|+ + tt data( )










,
.     (4)

We did not include granularity or sequence (A vs. 
B) in our main inverse-efficiency model because we 
did not have enough trials to separately estimate the 
effects of steps into the future, trial type, granularity, 
and sequence in the same model; further, there were 
no significant interactions between granularity and any 
other variable or between sequence and any other vari-
able. However, because steps into the future, granular-
ity, and sequence were orthogonalized, our design 
effectively controls for these variables at each step in 
the future. We return to the effects of granularity in the 
Results section and the General Discussion.

Results

Sequence learning.  Participants successfully learned 
the category sequences, achieving an accuracy of 84.33% 
(95% confidence interval, or CI = [81.61%, 87.05%]) on 
test trials from the rehearsal phase of the sequence- 
learning task—greater than chance level of 50%, t(99) = 
25.042, p < .001. Accuracy was high across both sequences 
(Sequence A: 85.3%, Sequence B: 81.5%), but was signifi-
cantly higher for Sequence A (i.e., the first learned 
sequence) than Sequence B (i.e., the second learned 

sequence), β = −0.313, 95% CI = [−0.537, −0.089], z = 
−2.746, p = .006. When asked to explicitly recall the cat-
egory orders, participants’ average accuracy was 97%, 
and recall accuracy was not significantly different 
between sequences (Sequence A: 96.9%; Sequence B: 
97%; V = 78.5, p = .488; because most participants 
scored 9/10 or 10/10 on recall, we used a Wilcoxon 
signed-rank test to account for nonnormality). Overall, 
these results verify that participants learned the order of 
both sequences.

Anticipation task.
Overall task performance.  We first conducted analy-

ses to ensure that participants performed effectively on 
the anticipation Task. Participants successfully used their 
memory to anticipate upcoming events (mean accuracy =  
75.22%; 95% CI = [73.2%, 77.3%]), t(99) = 72.19, p < 
.00001 (compared to chance performance). Participants 
were overall more accurate for Sequence B than for 
Sequence A, β = 0.149, 95% CI = [0.044, 0.255], z = 2.778, 
p = .005, although accuracy was high and significantly 
above chance for both sequences—Sequence A: 74%,  
t(99) = 21.117, p < .00001; Sequence B: 76.4%, t(99) = 
23.22, p < .00001. Response times did not significantly 
differ between the two sequences, β = −23.43, 95% CI = 
[−56.718, 9.806], t(97.63) = −1.501, p = .137. Furthermore, 
neither accuracy, β = −0.063, 95% CI = [−0.161, 0.035], 
z = −1.266, p = .206, nor response times, β = 26.12, 
95% CI = [−3.777, 56.027], t(91.72) = 1.712, p = .09, dif-
fered between trials with a mosaic filter and trials with 
a sponge filter.

Primary analyses.  Turning to our hypothesized effects 
of interest, we calculated each participant’s inverse effi-
ciency (i.e., average response time divided by accuracy; 
Townsend & Ashby, 1978) for each step into the future 
and conducted an LMM (see Fig. 3a for model coeffi-
cients; see the Supplemental Material for separate accu-
racy and response time models). Steps into the future 
robustly affected inverse efficiency, with less efficient 
responses for progressively further steps into the future, 
β = 310.41, 95% CI = [243.846, 376.974], t(102.47) = 9.140, 
p < .000001 (Fig. 3b). Granularity also influenced inverse 
efficiency, with less efficient responses when the number 
of steps between the probes was smaller, β = −64.60, 95% 
CI = [−99.822, −29.37], t(99) = −3.594, p = .0005.

Participants therefore accurately anticipated scene 
categories multiple steps into the future. How visually 
detailed were their predictions? To determine whether 
participants were only anticipating the upcoming cat-
egory or were also representing sequence-specific per-
ceptual features, we investigated whether trial type 
affected performance and whether this interacted with 
steps into the future. If participants anticipate visually 
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specific information, then performance should decrease 
on invalid trials (in which participants are probed with 
an incorrect sequence filter) compared to valid trials 
(in which the perceptual filter matches learned expecta-
tions). Consistent with our hypothesis, participants 
responded less efficiently to invalid versus valid trials, 
β = 224.01, 95% CI = [87.069, 360.950], t(145.35) = 3.206, 
p = .002 (Fig. 3c). This cost to performance is striking 
because the sequence-specific filters were not relevant 
to the correct answer, and when asked in the post-task 
questionnaire, most participants reported not noticing 
the sequence-to-filter mapping (68 did not notice; 32 
noticed). Importantly, the effect of trial type on inverse 
efficiency was not different between participants who 
noticed the manipulation compared to those who did 
not, β = −203.44, 95% CI = [−495.686, 88.798], t(144.59) = 
−1.364, p = .175.

Finally, we tested whether the effect of valid versus 
invalid trials was larger for closer versus further predic-
tions. If anticipated information declines in vividness 
or detail the further in the future it is, then trial validity 
should have a larger effect on nearby versus farther-
away predictions. Contrary to our hypothesis, however, 
there was no interaction between steps into the future 
and trial type on inverse efficiency, β = 51.12, 95%  
CI = [−51.542, 153.786], t(597.25) = 0.976, p = .330.

Hence, the validity manipulation demonstrates that 
responses were less efficient on trials in which partici-
pants were probed with the perceptual filter from the 

incorrect (vs. correct) sequence. We interpreted this 
efficiency cost as suggesting that individuals were 
incorporating perceptual features into their sequence 
representations and experienced a decrease in perfor-
mance when those perceptual features were not pre-
sented. However, an alternative explanation of the 
invalid versus valid behavioral cost is a perceptual odd-
ball effect. Because valid trials were more common, and 
because perceptual filters were consistent for a given 
sequence during learning, the sudden shift from the 
cue’s perceptual filter to the probes’ filters on the infre-
quent invalid trials may be unexpected. This may lead 
to a performance cost because of the perceptual sur-
prise of suddenly changing filters—even if no percep-
tual features were incorporated into anticipated 
information. We conducted a control experiment with 
101 participants to determine whether such a percep-
tual oddball effect could explain the validity effect we 
observed (see the Supplemental Material for details). 
In this experiment, individuals were first exposed to 
images in the same category order and with the same 
perceptual filters as in our sequence-learning task, but 
were not explicitly taught the category sequence order 
and performed only an indoor versus outdoor cover 
task. Individuals then performed a task analogous to 
our anticipation task, in which they were first cued with 
a scene and then saw two upcoming scenes on the 
screen. Critically, individuals were simply told to indi-
cate which of the two scenes was from the same indoor 
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Fig. 3.  Anticipation task performance in Experiment 1. Coefficient estimates with 95% confidence intervals for the inverse-efficiency model 
are shown in (a); predictors in the model were effect coded. In (b), we show inverse efficiency as a function of the number of steps between 
the cue and the correct probe (i.e., steps into the future). Higher inverse-efficiency values indicate less efficient (slower and/or less accurate) 
responses. Responses were less efficient when the correct probe was more (vs. fewer) steps away from the cue. Green lines and error ribbons 
indicate model predictions with 95% confidence intervals; green points indicate each participant’s average inverse efficiency for each step into 
the future. Inverse-efficiency differences between valid and invalid trials (trial type) are shown in (c). The dashed line at 0 indicates equally 
efficient responses on valid and invalid trials. Responses on invalid trials were overall less efficient compared to valid trials, as indicated by 
a positive difference score. Small green points indicate the average inverse-efficiency difference for each participant. The large green points 
indicates the average inverse-efficiency difference across participants with 95% confidence intervals.
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versus outdoor category as the cued scene. Thus, in this 
experiment, individuals were not asked to make predic-
tions about upcoming scene categories. If the difference 
in inverse efficiency for valid versus invalid trials reflects 
a perceptual oddball effect rather than incorporation of 
perceptual details into predictions of upcoming scene 
categories, then we should observe the same cost for 
invalid versus valid trials when participants are making 
indoor versus outdoor judgments.

In this control experiment, there was no effect of 
distance into the future on efficiency, β = −8.513, 95% 
CI = [−25.186, 8.160], p = .318 (see Figs. S1a and S1b in 
the Supplemental Material), showing that we eliminated 
our behavioral hallmark of multistep anticipation when 
individuals were performing an unrelated task. Criti-
cally, we found that there was no effect of trial type 
(invalid vs. valid trials) on the efficiency of indoor 
versus outdoor judgments, β = 12.294, p = .503, 95%  
CI = [−23.563, 48.152] (see Fig. S1c in the Supplemental 
Material). Thus, we eliminated the valid-invalid gap 
when individuals were making scene judgments but 
not anticipating upcoming scene categories. This sug-
gests that our original findings were unlikely to be due 
to the perceptual surprise of a filter swap and instead 
are consistent with our interpretation that participants 
were incorporating perceptual features into their pre-
diction of sequence structure.

Together, our results show that individuals accurately 
anticipate events multiple steps in the future, but do so 
less efficiently for further steps, and that anticipated infor-
mation at multiple timescales contains task-irrelevant 
perceptual features regardless of whether participants 
explicitly noticed these features and regardless of how 
far into the future participants anticipated.

Experiment 2

Having shown that individuals anticipate events mul-
tiple steps into the future with perceptual detail in 
Experiment 1, we next investigated how these effects 
change with consolidation. We ran a second experiment 
in which participants completed the anticipation task 
both immediately after sequence learning (to replicate 
Experiment 1), and either 1 day or 1 week later, to 
determine how varying lengths of consolidation influ-
ence multistep anticipation.

Method

Participants.  Our target was to double the sample size 
of Experiment 1, with participants split between two 
delay conditions. We recruited 355 participants through 
Prolific (www.prolific.co) to meet our target sample size. 
Sixty-two participants did not complete the second 

session of the experiment (21 participants in the 1-day 
condition and 41 participants in the 1-week condition), 
leaving 293 participants who completed the full experi-
ment. An additional 6 participants were excluded from 
data analysis because they failed to respond on more 
than 50% of trials, and 83 participants were excluded 
from data analysis because they did not perform statisti-
cally above chance on the anticipation task during the 
first session (56.875%, as determined by a binomial test; 
see the Procedure section). Applying these exclusions 
resulted in 204 participants (1-day condition: n = 99, Mage = 
31.65 years, SD = 5.03, Meducation = 15.18 years, SD = 1.85; 
1-week condition: n = 105, Mage = 30.65 years, SD = 6.73, 
Meducation = 14.99 years, SD = 2.12; see Table 1 for demo-
graphic information).

To be eligible for the experiment, participants had 
to report that they were between the ages of 18 and 
40, fluent English speakers, and resided in the United 
States. Participants were compensated $8 per hour for 
participating in session 1 and $8.50 per hour for par-
ticipating in session 2. All participants provided 
informed consent and all procedures were in accor-
dance with the policies of the Institutional Review 
Board at Columbia University.

Stimuli.  Stimuli were identical to Experiment 1.

Procedure.  The experiment was conducted on the 
Gorilla platform (www.gorilla.sc; Anwyl-Irvine et  al., 
2020) and was composed of three tasks: sequence learn-
ing, session 1 anticipation, and session 2 anticipation 
(Fig. 2a).

Sequence learning.  The sequence-learning task was 
identical to that of Experiment 1.

Session 1 anticipation task.  The Session 1 anticipation 
task was identical to that of Experiment 1, except that 
participants did not complete the post-task questionnaire 
following the task.

Session 2 anticipation task.  Half of the participants 
were invited to return 1 day later and half were invited to 
return 1 week later to take part in the Session 2 anticipa-
tion task. Participants were informed about the oppor-
tunity to return for a follow-up experiment the evening 
before they could complete the Session 2 test. The task 
was identical to the Session 1 anticipation task except 
that the total number of trials was increased to 320, with 
256 valid trials and 64 invalid trials. Consequently, there 
were 16 blocks of Sequence A anticipation (10 trials each) 
and 16 blocks of Sequence B anticipation (10 trials each). 
Sequence A and Sequence B blocks alternated, with the 
starting sequence counterbalanced across participants. 

www.prolific.co
www.gorilla.sc
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Participants were given six 60-s breaks spaced evenly 
throughout the task. The Session 2 anticipation task took 
60 min to complete. Following the task, participants com-
pleted the posttask questionnaire.

Analyses.  All analyses were identical to Experiment 1’s, 
with the following exceptions. In our primary inverse-
efficiency model, we included (a) delay (immediate test = 
−0.5, delayed test = 0.5) as a main effect and a random 
effect and (b) the interaction between delay, steps into 
the future, and trial type. Additionally, to control for the 
varying delay lengths (1 day or 1 week) and to determine 
whether they differentially influenced any consolidation-
dependent effects, we included delay length (−0.5 = 
1-day delay, 0.5 = 1-week delay) as a main effect and the 
interaction between delay length, delay, steps into the 
future, and trial type. We report significant interactions 
with delay length in the Results section. However, 
because there were no major differences between the 
1-day and 1-week delay, we report the main results col-
lapsed across delay length. As in Experiment 1, we did 
not observe any evidence for speed and accuracy trade-
offs. Separate accuracy and response time models are 
reported in the Supplemental Material.

On the basis of our predictions in the Introduction, 
we hypothesized that we would find (a) an interaction 
between trial type and delay, such that the effect of 
perceptual filter (match vs. mismatch) would be less 
strong after (vs. before) a delay, reflecting loss of per-
ceptual details over time, and (b) an interaction between 
steps and delay, such that the effect of closer (vs. fur-
ther) future events on response efficiency would be 
less strong after (vs. before) a delay, reflecting schema-
tization of memory over time.

As in Experiment 1, we report the main effect of 
granularity on inverse efficiency, but we did not include 
granularity or sequence in our main inverse-efficiency 
model after confirming there were no significant inter-
actions between granularity and other variables or 
between sequence and other variables.

Results

Sequence learning.  To verify that participants learned 
both sequences, we calculated accuracy on test trials 
from the rehearsal phase of the sequence-learning task 
(see the Method section). As in Experiment 1, accuracy 
was significantly higher than chance performance (50%) 
on the test trials, 82.62%, 95% CI = [80.50%, 84.73%], 
t(203) = 30.457, p < .000001. Accuracy was high across 
both sequences (Sequence A: 79.4%, Sequence B: 83.7%), 
but was significantly higher for Sequence B (i.e., the sec-
ond learned sequence) than Sequence A (i.e., the first 

learned sequence; β = 0.334, 95% CI = [0.183, 0.485], z = 
4.325, p = .00002).

Next, we calculated recall accuracy for sequences A 
and B. Participants’ average recall accuracy was 96.5%. 
Recall accuracy was not significantly different between 
sequences (Sequence A: 96.0%; Sequence B: 97.1%;  
V = 324, p = .675); because most participants scored 
9/10 or 10/10 on recall, we used a Wilcoxon signed-
rank test to account for nonnormality). Overall, these 
results verify that participants learned the order of both 
sequences.

Anticipation task.
Overall task performance.  We first ensured that partici-

pants were performing effectively on the anticipation task 
for both the immediate and delayed tests in both delay-
length conditions. Accuracy was significantly higher than 
chance performance (50% accuracy) in the anticipation 
task for Session 1 (i.e., the immediate test) and the antici-
pation task for Session 2 (i.e., the delayed test) in both the 
1-day and 1-week conditions (all ps < .00001).

Accuracy was not significantly different between 
sequences A and B, β = −0.013, 95% CI [−0.080, 0.054], 
z = −0.377, p = .706. Response times, however, were 
slower for Sequence B compared to Sequence A (i.e., the 
second vs. first learned sequence), β = 22.264, 95% CI = 
[8.387, 35.918], t(209.533) = 3.251, p = .001, with this effect 
becoming larger at the delayed test compared to the 
immediate test, β = 30.203, 95% CI = [12.764, 47.643], 
t(101625.549) = 3.394, p = .0007. Neither accuracy, β = 
−0.038, 95% CI = [−0.084, 0.008], z = −1.596, p = .111, nor 
response time, β = 0.305, 95% CI = [−10.74, 11.35], 
t(167.105) = 0.054, p = .957, differed between trials with 
a mosaic filter and trials with a sponge filter.

Primary analyses.  Turning to our hypothesized effects 
of interest, we calculated inverse-efficiency scores to cap-
ture both accuracy and response time in a single measure. 
We then conducted an LMM assessing whether delay, 
delay length, steps into the future, trial type, and their 
interactions influenced inverse efficiency on the anticipa-
tion task (see Fig. 4a for model coefficients; see the Sup-
plemental Material for separate accuracy and response 
time models).

Delay robustly influenced inverse efficiency, with 
participants’ responses becoming more efficient in the 
delayed versus immediate test, β = −318.413, 95% CI = 
[−403.126, −233.699], t(194.788) = −7.367, p < .000001 
(see Fig. 4b). There was a significant interaction 
between delay and delay length such that efficiency in 
the delayed (vs. immediate) test improved more at the 
1-day (vs. 1-week) delay, β = 161.470, 95% CI = [7.206, 
315.735], t(304.029) = 2.051, p = .041, but there were 
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no other interactions with delay length. This suggests 
that delay-dependent effects of other variables (e.g., 
steps into the future, trial type) on memory were similar 
for the 1-day and 1-week delays.

Replicating Experiment 1, both granularity and steps 
into the future affected inverse efficiency: There were 
less efficient responses when the number of steps 
between the probes was smaller, β = −64.254, 95% CI = 
[−76.584, −51.924], t(582.052) = −10.21, p < .000001, and 
when the correct answer was further into the future,  
β = 231.175, 95% CI = [202.401, 259.950], t(191.0712) = 
15.746, p < .000001 (see Fig. 4b).

As hypothesized, there was a significant step into 
the future by delay interaction: Inverse efficiency 
improved the most at the delayed test (vs. the immedi-
ate test) for further steps into the future, β = −62.635, 

95% CI = [−105.992, −19.279], t(2660.211) = −2.831, p = 
.005 (Fig. 4b). There was no three-way interaction 
between steps into the future, delay, and delay length; 
this suggests that delay-dependent changes in the effect 
of steps into the future on inverse efficiency were simi-
lar at the 1-day and 1-week tests, β = −15.525, 95%  
CI = [−140.943, 32.483], t(2660.211) = −0.351, p = .726.

Therefore, participants became more efficient in their 
responses following consolidation, and this efficiency 
improvement was larger for further steps into the future. 
Was this improvement in anticipation for further steps 
accompanied by forgetting of sequence-specific per-
ceptual details? To answer this question, we again inves-
tigated whether trial type (valid vs. invalid) affected 
performance, and whether this interacted with delay, 
steps into the future, and delay length (see Fig. 4a  
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for model coefficients). Replicating Experiment 1, par-
ticipants responded less efficiently to invalid versus 
valid trials, β = 129.683, 95% CI = [71.837, 187.529], 
t(319.046) = 4.394, p = .00002 (see Fig. 4c). Critically, there 
was also a trial type by delay interaction—the difference 
in efficiency between invalid and valid trials was smaller 
in the delayed (vs. the immediate) test, β = −139.373, 95% 
CI = [−236.321, −42.424], t(2660.211) = −2.818, p = .005 
(Fig. 4c). Contrary to our hypothesis but consistent with 
Experiment 1, there was no interaction between trial type 
and steps into the future, β = −6.171, 95% CI = [−49.528, 
37.185], t(2660.211) = −0.279, p = .780.

Together, our results show that anticipation became 
more efficient following consolidation, with a larger 
efficiency improvement for further steps into the future 
compared to closer ones. Consolidation also reduced 
the extent to which sequence-specific perceptual fea-
tures were incorporated into anticipated information, 
as indicated by the more limited impact of the percep-
tual filter applied to the probe images.

Repeated practice or consolidation?  In the current 
study, individuals repeatedly anticipated upcoming cate
gories in the sequence structure in the immediate ses-
sion (i.e., within Day 1), prior to our consolidation 
manipulation. This raises the possibility that some of our 
observed effects in comparing the first session to subse-
quent sessions were the result of repeated practice rather 
than the result of memory processes occurring during 
the consolidation delay. Alternatively, repeated retrieval 
and consolidation may have jointly contributed to our 
observed effects on memory, consistent with theories that 
retrieval and consolidation are closely intertwined and 
can cooperatively influence memory retention (Antony 
et al., 2017). To investigate these possibilities in our data, 
we examined whether early versus late trials within and 
across sessions revealed differing contributions of prac-
tice and delay to memory performance.

We found that efficiency on our multistep anticipa-
tion task improved during the immediate session (i.e., 
within Day 1) from early to late trials (first vs. second 
half, β = −286.350, p < .0001, 95% CI = [−374.428, 
−198.273]). This is consistent with an effect of repeated 
practice enhancing memory. Critically, however, late 
trials in the immediate session (Day 1) were less effi-
cient than early trials in the delayed session (Day 2 and 
Day 7; β = −302.424, p < .0001, 95% CI = [−403.404, 
−201.444]); this was also true when separately compar-
ing the immediate session to the 1-day delay, β = 399.97, 
p < .0001, 95% CI = [−540.118, −259.828], and to the 
1-week delay, β = −201.95, 95% CI = [−341.490, −62.419], 
p = .005. This improvement from the end of the first 
session to the beginning of the delayed session is con-
sistent with a memory-consolidation effect, in addition 
to the within-session improvements that may be driven 

by practice effects. Further, there was a discontinuity 
in the time course of response times between late trials 
of the immediate session and early trials of the delayed 
session, with faster response times even in the first few 
trials in the delayed session compared to the immediate 
session (see Fig. S2 in the Supplemental Material). 
Together, this suggests an improvement in sequence 
anticipation over the course of consolidation in addition 
to an effect of repeated practice.

Modeling Anticipation Strategies

Memory for temporal structure therefore changes over 
time to support multistep anticipation. But what strate-
gies do participants use to anticipate upcoming infor-
mation? Which strategies are most beneficial for 
behavior, and do they change with consolidation? One 
class of models predicts that a participant maintains an 
internal representation of the entire sequence in mem-
ory and explicitly rolls out the sequence, link by link, 
to anticipate upcoming events (Daw & Dayan, 2014). 
Another class predicts that a participant will build a 
representation for each item that incorporates cached 
information about future items, with stronger cached 
representations for events that are coming up sooner 
in the sequence (Dayan, 1993).

Drawing inspiration from these models, we tested 
whether participants were using a link-based strategy 
or a cue-based strategy. In a link-based strategy, each 
link between items in a sequence is represented in 
memory and participants sequentially “traverse” the 
sequence of links beginning at the cue item until they 
reach one of the probe items. A weak (vs. strong) link 
would be more difficult to traverse (increasing response 
time), and this slowdown would occur whenever the 
rollout from the cue to the nearest probe includes this 
link. In a cue-based strategy, information about future 
items becomes embedded in the representation of each 
cue, with closer upcoming items being more strongly 
represented. Identifying which of two probes is coming 
up sooner would be accomplished by directly compar-
ing the probe items to this learned cue representation 
to determine which is more similar. Here, response 
times should depend on the quality of the cached rep-
resentation at the given cue item, and trials for neigh-
boring cues in the sequence could yield very different 
response times. Thus, the critical difference between 
these two models lies in whether response times are 
driven by the starting point of the anticipation judg-
ments (cue model) or by the connecting links that need 
to be traversed (link model). The link model predicts 
that each link between scene categories is associated 
with a fixed response time, so that traversing that link 
yields similar response times across trials regardless of 
the starting point in the sequence (Fig. 5a and 5b). On 



14	 Tarder-Stoll et al.

the other hand, the cue model predicts that the response 
time penalty for making predictions at progressively 
farther distances is specific to each cue and is not tied 
to the specific links being traversed (Fig. 5a, 5c).

To adjudicate between these two strategies, we mod-
eled response times using both a link model and a cue 
model, and tested which model better explained antici-
pation behavior (Fig. 5). We hypothesized that the link 
model would better predict response times in the antici-
pation task because we asked participants to generate 
stories about the sequences by creating links between 
the scene categories. In contrast, a cue-based model 
may be a more useful and efficient approach when 
sequences are nonoverlapping (so that transitions 
between states are not context-dependent) and when 

there is time pressure for very rapid responses (limiting 
the opportunity to explicitly roll out future states with 
a link-based approach; Gershman, 2018). We also 
hypothesized that using a link model rather than a cue 
model would benefit anticipation task performance, 
because the link model is analogous to a model-based 
strategy (Daw & Dayan, 2014), which is more compu-
tationally expensive but generally leads to higher accu-
racy than cue-based (caching) models (Momennejad 
et al., 2017).

Method

Analyses.  Using the data reported in Experiment 1 and 
Experiment 2, we created two different kinds of linear 

Fig. 5.  Schematic of possible anticipation strategies. On this sample trial (a), when a participant was cued with Scene 2 and probed 
with Scenes 3 and 4, they showed a slower-than-average response time (RT) when identifying that Scene 3 is coming up sooner in the 
sequence. The link model (b) would explain this poor performance as coming from a weak connection between Scene 2 and Scene 3 
(red arrow), and would therefore predict that any trial involving that link (such as being cued with Scene 1 and probed with Scenes 
4 and 5) would lead to a slower-than-average response time. The cue model (c), in contrast, assumes that the representation of each 
scene category contains cached information about upcoming scene categories that is used to make anticipatory judgments. The slow 
response time in (a) is therefore the result of a poor representation for Scene 2 (red circle), and any trial in which Scene 2 is the cue 
would lead to a slower-than-average response time.
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models in the R programming language. We modeled 
response times, as opposed to inverse efficiency, in these 
models because they required trial-by-trial measures, and 
inverse efficiency is a summary statistic. We modeled 
response times only on correct trials to ensure that par-
ticipants were successfully using learned information.

For each participant, we first modeled response 
times as a function of the links that participants crossed 
to get from the cue to the correct answer in the probe 
during each anticipation task trial. In this link model 
(Fig. 6a), each link between scene categories in a given 
sequence was modeled separately according to whether 
or not that link would be traversed from the cue to the 
correct answer on a given trial (0 = not used, 1 = used). 
Because the links between scene categories were 

different in each sequence, we created separate models 
for Sequence A and Sequence B. For Experiment 2,  
we also modeled response times separately for the 
immediate and delayed sessions. We used the following 
R-based formula, with separate regressors for each link 
between adjacent scene categories in the circular 
sequence:

	

lm

RT link1 link2 link3 link4 link5 link6
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We next modeled each participant’s response times 
as a function of the scene category that they were cued 
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Fig. 6.  Link and cue model schematic and results. A model schematic for the link and cue models is shown in (a). Open 
circles represent scene categories, and lines represent the link between the categories in the sequence. In the link model 
(left), trial-wise response times were predicted as a function of the links between the cue image and the correct answer. In 
this example, the predicted response time (RT) depends on link-specific values for the green link (from Category 2 to 3) 
and the red link (from Category 3 to 4). In the cue model (right), trial-wise response times were instead assumed to vary 
as a function of the cued category, with linearly increasing response times based on the distance to the correct answer. In 
this example, the predicted response time depends on a cue-specific value for the green cue (Category 2) modulated by the 
number of steps to the correct answer (here, two steps). Link model fits were better than cue model fits (b), as indicated 
by a positive difference score; this difference was significant across both experiments and both test delays in Experiment 2 
(immediate and delayed). The dashed line at 0 indicates equal cue and link model fits. Small points indicate each partici-
pant’s model-fit difference for each experiment and delay. The large points indicate the average model-fit difference across 
participants with 95% confidence intervals. Higher link (vs. cue) model fits in (c) predict accuracy on the anticipation task, 
but only in the delayed (vs. the immediate) test. Lines and error bands indicate model predictions with 95% confidence 
intervals. Small points indicate each participant’s model-fit difference at each delay.
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with during each trial in the anticipation task. This 
model assumed that increasingly distant future states 
would be increasingly difficult to access (consistent 
with temporal discounting; Gershman et al., 2012) but 
that the degree of difficulty could be different for dif-
ferent cues. In this cue model (Fig. 6a), each scene 
category in a given sequence was modeled separately, 
coded by whether or not that category was the cue on 
a given trial and, if it was cued, how many steps into 
the future the correct answer was (0 = not cued, 1 = 
cued on a 1-step trial, 2 = cued on a 2-step trial, 3 = 
cued on a 3-step trial, 4 = cued on a 4-step trial). We 
again modeled response times separately for Sequence 
A and Sequence B (because their future states differed) 
and, in Experiment 2, separately for the immediate and 
delayed test. We used the following R-based formula, 
with separate regressors for each scene category:

	 lm
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We assessed goodness of fit for both the link and 
the cue models by creating null models for each par-
ticipant in which the data were fitted to a model in 
which the cue identities were randomly shuffled. We 
created 100 null models for each participant by repeat-
ing this procedure 100 times. Next, we calculated the 
R2 from the real model and each of the 100 null models 
for each participant. We then created a model-fit score 
for each participant and each sequence by calculating 
the difference between the R2 of the real model and 
the average R2 of the null models. To test whether the 
link and cue model fits were significantly better than 
the permuted model fits, we conducted one-sample t 
tests comparing the model-fit score for each model, 
averaged across sequences, to 0.

Next, to determine whether the link or the cue model 
provided a better fit to response times and whether this 
differed by delay, we created a model difference score 
by subtracting each participant’s cue-model-fit score 
from the link-model-fit score, separately for each 
sequence. We then predicted this model difference score 
as a function of sequence (Experiment 1), or as a func-
tion of delay, delay length, their interaction, and sequence 
(Experiment 2). In these models, the intercept term 
would provide evidence for better link- or cue-model 
fits overall across our sample, whereas the delay term 
would provide evidence for a shift in model fit with 
consolidation. We used the following R-based formula:
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We hypothesized that the link model would provide 
a better fit to response times than the cue model for 
two reasons: (a) Participants were encouraged to create 
stories consisting of pairwise links between adjacent 
images in the sequences; and (b) cue-based models 
may be a more useful and efficient approach when 
sequences are nonoverlapping and there is time pres-
sure for very rapid responses (Gershman, 2018). We 
were agnostic as to whether the link-model versus cue-
model fit would change with delay.

Finally, to determine which strategy yielded superior 
behavioral performance, we investigated whether indi-
vidual differences in participants’ model difference 
scores predicted accuracy on the anticipation task. We 
focused on accuracy to have a dependent measure that 
is independent from response times, which were the 
models’ outcome variable. We predicted participants’ 
average accuracy as a function of their model difference 
score and sequence (Experiment 1) or model difference 
score, delay, delay length, their interactions, and 
sequence (Experiment 2). We used the following R 
based formula:

 lmer
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sequence 1 particip

~ * *

|+ + aant  data( )










,
.   (8)

We hypothesized that a better link-model versus cue-
model fit would predict more accurate responses on 
the anticipation task. This is because our link model is 
meant to approximate model-based strategies which, 
although computationally costly, enable accurate and 
flexible responses (Momennejad et al., 2017). We were 
agnostic as to whether the effect of link-model versus 
cue-model fits on accuracy would change with delay.

Results

We first tested whether our link model and cue model 
provided good fits to participants’ response times in 
the anticipation task by comparing their model-fit 
scores (model R2 vs. null models’ R2; see the Method 
section) to 0. In Experiment 1, the link model provided 
a better fit to response times than the null models—
mean R2 difference: .011; t(99) = 2.226, p = .028. The 
cue model, however, was not better than the null  
models—mean R2 difference: −.002; t(99) = −0.53, p = 
.594. In Experiment 2, the link model provided a better 
fit to response times than the null models in both Ses-
sion 1—mean R2 difference: .0179; t(203) = 5.106, p < 
.000001—and Session 2—mean R2 difference: .0182; 
t(203) = 7.865, p < .000001. Contrary to Experiment 1, 
the cue model also provided a better fit to response 
times than the null models for both Session 1—mean 
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R2 difference: .0104; t(203) = 3.936, p =.0001138—and 
Session 2—mean R2 difference: .0105; t(203) = 5.470,  
p = .0000001.

We next investigated whether the link or cue model 
performed better and whether the superior model 
changed with delay. The link model provided a better 
fit to response times than the cue model in both Experi-
ment 1, β = 0.014, 95% CI = [0.006, 0.0215], t(198) = 
3.48, p =.0006 (Fig. 6b), and Experiment 2, β = 0.008, 
95% CI = [0.004, 0.012], t(225.9) = 4.268, p = .00003 (Fig. 
6b). This superiority of the link model did not change 
across sequences—Experiment 1: β = −0.01, 95% CI = 
[−0.025, 0.006], t(198) = −1.24, p = .216; Experiment 2: 
β = −0.0001, 95% CI = [−0.005, 0.005], t(628.7) = 0.065, 
p = .948—nor (in Experiment 2) across delay, β = 
−0.0008, 95% CI = [−0.008, 0.006], t(259.8) = −0.259,  
p = .796; delay length, β = 0.0005, 95% CI [−0.007, 
0.008], t(298.7) = 0.148, p = .883; or their interaction,  
β = −0.009, 95% CI = [−0.022, 0.004], t(331.1) = −1.367, 
p = .172.

Finally, we assessed whether individual differences 
in strategy use, indexed by superior fits for the link 
model versus the cue model, predicted average accu-
racy on the anticipation task and whether this effect 
changed with delay. In Experiment 1, differences in the 
link versus cue model difference score did not predict 
accuracy, β = 0.026, 95% CI = [−0.166, 0.219], t(123.6) = 
0.271, p = .787 (Fig. 6c). In contrast, model difference 
scores did predict accuracy in Experiment 2, β = 0.165, 
95% CI = [0.006, 0.323], t(666.895) = 2.039, p = .042 (Fig. 
6c). Importantly, there was a model difference score by 
delay interaction, β = 0.366, 95% CI = [0.066, 0.666], 
t(653.688) = 2.394, p = .017 (Fig. 6c), so that higher link 
versus cue model difference scores did not predict 
accuracy in the immediate test session, replicating 
Experiment 1, β = 0.074, 95% CI = [−0.09, 0.239], 
t(297.291) = 0.883, p = .378, but did predict accuracy 
in the delayed test session, β = 0.299, 95% CI = [0.052, 
0.547], t(250.673) = 2.375, p = .018. Delay length did 
not interact with model difference score, β = −0.006, 
95% CI = [−0.313, 0.300], t(681.477) = −0.040, p = .968, 
nor was there a three-way interaction between delay 
length, model difference score, and delay, β = 0.2333, 
95% CI = [−0.368, 0.833], t(654.571) = 0.760, p = .448.

Thus, the link model more effectively captured par-
ticipants’ response times than the cue model, regardless 
of delay. Higher link versus cue model fits also pre-
dicted accuracy in the anticipation task, but only after 
consolidation.

General Discussion

Memory for temporal structure is adaptive because it 
allows us to anticipate what is likely to happen in the 

future. A burgeoning line of research has explored how 
memory for temporal structure is represented in the 
brain (Bellmund et al., 2020; Hsieh & Ranganath, 2015; 
Kalm et al., 2013; Kalm & Norris, 2014; Lee et al., 2021) 
and in behavior (Drosopoulos et al., 2007; Tiganj et al., 
2022) to guide adaptive future-oriented behavior. 
Indeed, prediction is thought to be a primary cognitive 
and neural function (Clark, 2013; Friston, 2005), and 
offline periods of memory consolidation may play a 
crucial role in extracting regularities that will be useful 
for prediction (Hobson & Friston, 2012). Our findings 
show how memories for such regularities are shaped 
by consolidation and provide an important link in 
understanding the adaptive function of memory.

Across two experiments, we found that multistep 
anticipation became more efficient with consolidation, 
particularly for further events. Anticipated events con-
tained representations of task-irrelevant perceptual fea-
tures, but these perceptual features had less influence 
on behavior after consolidation. Finally, maintaining a 
link-based, rather than a cue-based, model of the 
sequence after consolidation benefited multistep antici-
pation. Overall, these results shed light on how memo-
ries adaptively shift to prioritize temporal structure at 
the cost of perceptual details.

Our findings are consistent with, and build upon, 
influential theories of memory consolidation, which 
posit that memories shift from detailed to schematic 
over time (Robin & Moscovitch, 2017; Sekeres et  al., 
2018; Winocur et  al., 2010). Schematized representa-
tions should support memory for the high-level struc-
ture of experiences (McClelland et al., 1995) but may 
lack perceptual detail. Indeed, we found that, with con-
solidation, perceptual details became more weakly rep-
resented in memory. They nevertheless still exerted an 
influence on behavior, suggesting that perceptual 
details were not entirely forgotten after consolidation 
(Gilboa & Moscovitch, 2021; Robin & Moscovitch, 
2017). However, it is important to note that, in our 
experiments, temporal structure was task relevant 
whereas perceptual features were incidental to the task. 
Perceptual details may have been more strongly main-
tained in memory if they were task relevant (Schapiro 
et al., 2017).

In contrast to perceptual details, information about 
temporal structure was more efficiently accessed after 
a delay. Our findings of efficient access of multistep 
sequences after consolidation extends prior work show-
ing memory improvements after consolidation for cat-
egory structure (Schapiro et al., 2017) and short-timescale 
statistical regularities (Durrant et al., 2011). Extending 
consolidation-related benefits to multistep anticipation, 
especially for events further in the future, suggests that 
order judgments—which may involve retrieving a 
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compressed representation of temporal structure (Tiganj 
et al., 2022)—become even more compressed over time. 
Thus, our work allows insights into how behavior may 
become increasingly adaptive with consolidation by 
allowing fast access to anticipated future events—par-
ticularly those that are further in the future.

We used our trial-type manipulation (valid, matching 
vs. invalid, mismatching perceptual filters) to probe the 
extent to which anticipation became less visually 
detailed over time, as predicted by theories of memory 
consolidation (Robin & Moscovitch, 2017; Sekeres et al., 
2018). A related prediction is that anticipated events 
should be represented in a more gist-like manner over 
consolidation (Dudai et al., 2015). One potential way of 
testing that with our design is by examining whether 
the effect of granularity changes with delay: When the 
two probes are close to each other in the sequence, 
judgments about which is nearer should be more chal-
lenging as a memory becomes more gist-like. Although 
we observed a general effect of granularity, we did not 
observe any interactions with delay. This does not rule 
out increasingly gist-like memories over time; instead, 
in our study, gist-like memories may be reflected primar-
ily in the loss of perceptual details rather than the loss 
of temporal precision in predicted events.

To further probe how temporal structure is represen
ted in memory, we drew inspiration from reinforcement- 
learning models to determine what types of internal 
models were most useful for anticipation, both imme-
diately and at a delay. Individuals tended to use a link-
based strategy (akin to a model-based representation) 
rather than a cue-based strategy (akin to a successor 
representation), and this preference for the link model 
over the cue model was present in both the immediate 
session and after consolidation. Critically, maintaining 
a link (vs. cue) model after consolidation predicted 
accuracy on the anticipation task. This finding dovetails 
with predictions of model-based learning: Such models 
are thought to lead to highly accurate representations 
postconsolidation because they store a fully connected 
internal model of an environment (Y. Liu et al., 2021; 
Wimmer et al., 2023). However, such models are com-
putationally expensive because they require an indi-
vidual to traverse individual links between states (Daw 
& Dayan, 2014). Thus, we propose that consolidation 
processes may be particularly adaptive because they 
allow the brain to maintain and stabilize—and perhaps 
make more efficient—computationally intensive 
representations.

Although we found that the link model was the opti-
mal internal model in our task, other tasks might be 
better solved with a cue model. Past studies have shown 
a preference for successor representation strategies 
(conceptually similar to our cue model) when short 

sequences end in monetary reward (Momennejad et al., 
2017). A cue-model preference may therefore emerge 
if sequences end in a goal location or a reward—
whereas in our task, the sequences were circular with-
out a salient endpoint. Further, including other features 
in the sequence, such as event boundaries, could lead 
to a model in which participants cache future states 
within an event and skip between event boundaries, 
rather than traversing each link separately (Michelmann 
et al., 2023). Finally, other models could contain infor-
mation about each item’s position within the sequence 
in addition to, or instead of, the links between succes-
sive items (Kalm & Norris, 2014).

Despite finding robust differences in memory for 
temporal structure between the immediate and delayed 
sessions, we failed to find further improvements from 
the 1-day to the 1-week delay. This may have occurred 
because participants repeatedly anticipated the same 
sequences across the experiment. Repeated retrieval 
may quicken memory consolidation (Antony et  al., 
2017). Indeed, repeated retrieval, compared to restudy, 
increases behavioral markers of semanticization after 
consolidation (Lifanov et al., 2021), and repeatedly test-
ing regularities in a statistical-learning task reduces 
forgetting of explicit memories over the course of con-
solidation (H. Liu et al., 2023). Repeated anticipation 
may have likewise hastened schematization processes, 
thus reducing differences between our 1-day and 
1-week conditions. In line with these theories, we 
found that repeated retrieval and a period of consolida-
tion both enhanced efficiency in our sequence- 
anticipation task. Practice and consolidation may  
therefore jointly contribute to retention of sequence 
memory: This has been well documented in the motor-
learning literature, which shows that motor sequence 
memory tends to first improve with training and then 
further improve with consolidation (Brawn et al., 2010). 
Our findings provide a novel extension of sequence- 
consolidation effects to the episodic-memory literature: 
we show that explicit judgments about temporally 
extended sequences of images are enhanced both with 
repeated practice and with consolidation.

Additionally, our findings that consolidation bene-
fited sequence memory is consistent with other recent 
work showing sleep-related improvements (followed 
by protracted forgetting) of memory for real-world 
sequences (Diamond et al., 2024). This pattern of results 
is similar to ours, and suggests that an initial consoli-
dation-related benefit may stabilize or decrease over 
time, with no subsequent improvement with longer 
delays. Thus, the lack of difference between our 1-day 
and 1-week conditions in the distance and granularity 
effects is consistent with these findings in that sleep-
related memory consolidation benefits do not show 
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further improvements over long delays (Diamond et al., 
2024). Despite the convergence of these findings, it is 
important to note that our findings may be limited to 
healthy younger adults. Future work could test the gen-
eralizability of this work to other samples.

Note that our sample was limited to healthy younger 
adults who were either undergraduate students or Pro-
lific workers. Future work should test the generaliz-
ability of our findings to more heterogeneous samples 
and to other age groups because the impact of con-
solidation is known to vary across the lifespan (Gui 
et  al., 2017). Further, future work can investigate 
whether sleep is critical for driving these consolidation 
effects and how prediction efficiency changes over 
much longer delays of months or years.

In summary, we showed that consolidation leads to 
efficient access of temporal structure in the service of 
multistep anticipatory judgments, but at the cost of 
perceptual details. Furthermore, postconsolidation 
maintenance of internal models that linked experienced 
events predicted accurate anticipation, raising the 
intriguing possibility that consolidation may increase 
the efficiency, accuracy, or stability of computationally 
intensive strategies. Together, our work shows how 
memories are maintained and transformed over time to 
prioritize representations of temporal structure at the 
expense of incidental perceptual features—allowing us, 
in turn, to anticipate likely upcoming events and behave 
adaptively in a complex world.
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