Memory for the past serves a **prospective** function: to predict future events\(^1\).\(^2\).

Question 1: How do we flexibly generate predictions at multiple timescales?

Question 2: How are predictions updated when our environments change?

Introduction

Participants predicted upcoming events from the day 1 maps along multiple timescales with comparable accuracy, but were slower for further rooms.

Hypotheses

Prediction at Multiple Timescales

Prediction Updating

Prediction by Integration Subtype

Activity patterns during the blank period should resemble those for upcoming rooms, though in some regions this prediction may not be context-specific. The timescale of prediction will be longer for progressively more anterior brain regions\(^3\),\(^4\).

After integration, we hypothesize that patterns of activity will be updated to correlate with the templates for the integrated path, and these correlations will increase as a function of run number.

Summary

Individuals can accurately make predictions at a range of timescales. These predictions can be updated rapidly, but improve with practice. Ongoing fMRI studies will examine how multiple timescales of prediction are supported across perceptual and memory systems.

References