

Multi-Step Prediction and Integration in Naturalistic Environments

DPML

Hannah Tarder-Stoll, Christopher Baldassano, Mariam Aly Department of Psychology, Columbia University

Introduction

Memory for the past serves a prospective function: to predict future events^{1, 2}.

Question 2: How are predictions updated when our environments change?

Experimental Design Day 2 Day 1 Map A: Green Map A: Blue **Prediction (Day 1 Maps)** green Which comes first? Blank Period. 1-5 rooms ahead, Map B: Green Map B: Blue Integration Learning Map A **Prediction (Updated Maps)** - Map Structure -Which comes **Blank Period** 1-5 rooms ahead, N = 16Prediction Task (Day 1 Maps): 64 trials Prediction Task (Updated Maps): 96 trials

Hypotheses

Prediction at Multiple Timescales

Participants predicted upcoming events from the day 1 maps along multiple timescales with comparable accuracy, but were slower for further rooms.

Predictions are Flexibly Updated after Integration

Prediction performance using the updated maps improved across runs, even without trial-by-trial feedback. Participants improved most for trials that required integration to reach the correct answer.

Planned Neuroimaging Analyses

Activity patterns during the blank period should resemble those for upcoming rooms, though in some regions this prediction may not be context-specific. The timescale of prediction will be longer for progressively more anterior brain regions^{3, 4}.

After integration, we hypothesize that patterns of activity will be updated to correlate with the templates for the integrated path, and these correlations will increase as a function of run number.

Summary

Individuals can accurately make predictions at a range of timescales. These predictions can be updated rapidly, but improve with practice. Ongoing fMRI studies will examine how multiple timescales of prediction are supported across perceptual and memory systems.

References

¹Buckner, R.L. (2010). The role of the hippocampus in prediction and imagination. *Annual Review of Psychology, 61,* 27-48. ²Brown, T.I., Carr, V.A., LaRocque, K.F., Favila, S.E., Gordon, A.M., Bowles, B., Bailenson, J.M., Wagner, A.D. (2016). Prospective representation of navigational goals in the human hippocampus. *Science*, *352(6291)*, 1323-1326.

³Hasson, U., Chen, J., Honey, C.J. (2015). Hierarchical process memory: memory as an integral component of information processing. *Trends in Cognitive Sciences*, 19(6), 304-313.

⁴ Brunec, I.K., Momennejad, I. (2019). Predictive Representations in in Hippocampal and Prefrontal Hierarchies. *BioRxiv*, 786434