Switching between external and internal attention in hippocampal networks

Craig Poskanzer & Mariam Aly

Columbia University

Introduction

We constantly switch between paying attention to the outside world and our own thoughts/memories.

The hippocampus is involved in both **external** and **internal** attention.^{1,2,3}

The basal forebrain biases the hippocampus toward external processing. 4

The dorsal attention network (DAN) provides attentional resources to facilitate memory retrieval.⁵

Hypothesis: Hippocampal connectivity^{6,7} differentiates between external and internal attentional states.

Task Design

Cue Learning

Sample Task Stimuli

Room Match

External vs. Internal Attention Task

Explicitly-Instructed Condition: Attentional state is assigned at the start of each trial

Memory-Guided Condition: Attentional state is chosen based on the stay/switch cue from the previous trial

Regions of Interest-

Hippocampus Basal Forebrain DAN VAN

Background Connectivity

Remove task-evoked response⁶:

Hippocampus connectivity

Hippocampus connectivity patterns flip with varying external vs. internal attention demands

DAN-

Hippocampus

accuracy on the

memory-guided

connectivity

predicts

condition

Background Connectivity and Task Performance

Basal Forebrain-Hippocampus connectivity not related to attention task performance

Control Analyses

1 Selective to connectivity?

Univariate activity does not differ across explicitly-instructed and memory-guided tasks

Univariate DAN activity does not predict accuracy on explicitly-instructed or memory-guided tasks

2 Selective to these networks?

Ventral attention network background connectivity with hippocampus does not differ across task conditions

Conclusions

- Hippocampus shows differential connectivity patterns during externally cued vs. internally guided attention.
- Basal Forebrain shows higher connectivity with hippocampus when external attention demands are proportionately higher.
- DAN shows higher connectivity with hippocampus when internal attention demands are proportionately higher.
- DAN interactions with hippocampus are related to better performance on a memory-guided attention task.

1. Aly & Turk-Browne (2016). *Cerebral Cortex* 2. Honey et al. (2012). *Net Neuro* 3. Günseli & Aly (2020). *eLife* 4. Tarder-Stoll, Jayakumar, et al. (2020). *Neuropsychologia* 5. Cabeza. (2008). *Neuropsychologia* 6. Al-Aidroos et al. (2012). *PNAS* 7. Li et al. (2022). preprint

Funding: NSF CAREER Award (BCS-1844241) to M.A